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I.   INTRODUCTION 

The history of fractional calculus is almost as long as the development of ordinary calculus theory. In the past few decades, 

fractional calculus has been applied to many fields, such as physics, dynamics, signal processing, electrical engineering, 

viscoelasticity, economics, biology, control theory, electronics, etc [1-7]. However, the definition of fractional derivative is 

not unique. Common definitions include Riemann-Liouville (R-L) type of fractional derivative, Caputo type of fractional 

derivative, Grunwald-Letnikov (G-L) type of fractional derivative, and Jumarie's modified R-L fractional derivative [8-11]. 

Since the Jumarie type of R-L fractional derivative makes the derivative of constant function equal to zero, it is easier to 

use this definition to connect fractional calculus with traditional calculus. 

In this paper, based on Jumarie type of R-L fractional calculus, the linear systems of fractional differential equations is 

studied. We use examples to illustrate how to solve linear systems of fractional differential equations according to the 

characteristic polynomials. We discuss this problem in three cases: all eigenvalues are real and distinct, having the same 

real eigenvalues, and having complex eigenvalues. A new multiplication of fractional analytic functions plays an important 

role in this article. In fact, the new multiplication is a generalization of the multiplication of ordinary analytic functions.  

II.   DEFINITIONS AND PROPERTIES 

Firstly, we introduce the fractional calculus and some properties used in this paper. 

Definition 2.1 ([12]): Let 0 < 𝛼 ≤ 1, and 𝑡0  be a real number. The Jumarie’s modified R-L 𝛼-fractional derivative is 

defined by 

                                                                            ( 𝐷𝑡0 𝑡
𝛼)[𝑓(𝑡)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫

𝑓(𝑥)−𝑓(𝑡0)

(𝑡−𝑥)𝛼 𝑑𝑥
𝑡

𝑡0
,                                                   (1) 

where Γ( ) is the gamma function. 
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Proposition 2.2 ([13]):  Let  𝛼, 𝛽, 𝑡0, 𝐶  be real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                        ( 𝐷𝑡0 𝑡
𝛼)[(𝑡 − 𝑡0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑡 − 𝑡0)𝛽−𝛼,                                                   (2) 

and 

                                                                                              ( 𝐷𝑡0 𝑡
𝛼)[𝐶] = 0.                                                                              (3) 

In the following, the definition of fractional analytic function is introduced. 

Definition 2.3 ([14]): Assume that 𝑡, 𝑡0, and 𝑎𝑘  are real numbers for all 𝑘, 𝑡0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 

𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be expressed as an 𝛼-fractional power series, that is, 𝑓𝛼(𝑡𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)𝑘𝛼∞

𝑘=0  on some open 

interval containing 𝑡0, then we say that 𝑓𝛼(𝑡𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on 

closed interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional 

analytic function on [𝑎, 𝑏]. 

Next, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([15]): Let 0 < 𝛼 ≤ 1, and 𝑡0 be a real number. If 𝑓𝛼(𝑡𝛼) and 𝑔𝛼(𝑡𝛼) are two 𝛼-fractional analytic functions 

defined on an interval containing 𝑡0 , 

                                                𝑓𝛼(𝑡𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0 ,                                 (4) 

                                               𝑔𝛼(𝑡𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                 (5) 

Then  

                                                                     𝑓𝛼(𝑡𝛼) ⊗ 𝑔𝛼(𝑡𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)𝑘𝛼∞

𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑡 − 𝑡0)𝑘𝛼 .                                                 (6) 

Equivalently, 

                                                       𝑓𝛼(𝑡𝛼) ⊗ 𝑔𝛼(𝑡𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑡 − 𝑡0)𝛼)

⨂𝑘

 .                                                    (7) 

Definition 2.5 ([16]): Let 𝑛 be a positive integer, (𝑓𝛼(𝑥𝛼))
⊗𝑛

= 𝑓𝛼(𝑥𝛼) ⊗ ⋯ ⊗ 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼).  

In the following, we introduce the fractional exponential function and fractional cosine and sine function. 

Definition 2.6: The 𝛼-fractional exponential function is defined by 

                                                                         𝐸𝛼(𝑡𝛼) = ∑
𝑡𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                        (8) 

Where  0 < α ≤ 1 , and 𝑡 is a real variable. On the other hand, the 𝛼-fractional cosine and sine function are defined as 

follows: 

                                                        𝑐𝑜𝑠𝛼(𝑡𝛼) = ∑
(−1)𝑘𝑡2𝑘𝛼

Γ(2𝑘𝛼+1)
= ∑

(−1)𝑘

(2𝑘)!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂2𝑘
∞
𝑘=0

∞
𝑘=0,                                          (9) 

and 
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                                                        𝑠𝑖𝑛𝛼(𝑡𝛼) = ∑
(−1)𝑘𝑡(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
= ∑

(−1)𝑘

(2𝑘+1)!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂(2𝑘+1)
∞
𝑘=0

∞
𝑘=0 .                         (10) 

Proposition 2.7: If  0 < 𝛼 ≤ 1 and 𝑐, 𝑑 are two real numbers. Then 

                                                       𝐸𝛼((𝑐 + 𝑖𝑑)𝑡𝛼) = 𝐸𝛼(𝑐𝑡𝛼) ⊗ (𝑐𝑜𝑠𝛼(𝑑𝑡𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑑𝑡𝛼)).                                     (11) 

III.   EXAMPLES 

In this section, we use examples to illustrate how to solve linear systems of fractional differential equations. 

Example 3.1: Let 0 < 𝛼 ≤ 1. Find the general solution of the linear system of fractional differential equations 

 

                                                                         ( 𝐷𝑡0 𝑡
𝛼) [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
] = [

2 6
−2 −5

] [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
]                                                        (12) 

Solution   Since the characteristic equation is 

                                                                                               |
2 − 𝜆 6

−2 −5 − 𝜆
| = 0.                                                            (13) 

It follows that the eigenvalues of [
2 6

−2 −5
] are  

                                                                                           𝜆1 = −1, 𝜆2 = −2.                                                                     (14) 

(i) 𝜆1 = −1: [
2 − 𝜆1 6

−2 −5 − 𝜆1
] 𝑣1 = 0, then [

3 6
−2 −4

] 𝑣1 = [0
0
], and hence the eigenvector 𝑣1 = [ 2

−1
]. 

(ii) 𝜆2 = −2: [
2 − 𝜆2 6

−2 −5 − 𝜆2
] 𝑣2 = 0, then [

4 6
−2 −3

] 𝑣2 = [0
0
], and hence the eigenvector 𝑣2 = [ 3

−2
]. 

Therefore, the general solution of this linear system of fractional differential equations is  

                                                                          [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
]  

                                                                     = 𝑐1 𝐸𝛼(−(𝑡 − 𝑡0)𝛼)𝑣1 + 𝑐2 𝐸𝛼(−2(𝑡 − 𝑡0)𝛼)𝑣2  

                                                                     = 𝑐1 𝐸𝛼(−(𝑡 − 𝑡0)𝛼)[ 2
−1

] + 𝑐2 𝐸𝛼(−2(𝑡 − 𝑡0)𝛼)[ 3
−2

]  

                                                                     = [2𝑐1 𝐸𝛼(−(𝑡−𝑡0)𝛼)+3𝑐2 𝐸𝛼(−2(𝑡−𝑡0)𝛼)

−𝑐1 𝐸𝛼(−(𝑡−𝑡0)𝛼)−2𝑐2 𝐸𝛼(−2(𝑡−𝑡0)𝛼)
].                                                               (15) 

That is, 

                                                           𝑥𝛼(𝑡𝛼) = 2𝑐1 𝐸𝛼(−(𝑡 − 𝑡0)𝛼) + 3𝑐2 𝐸𝛼(−2(𝑡 − 𝑡0)𝛼),                                       (16) 

                                                           𝑦𝛼(𝑡𝛼) = −𝑐1 𝐸𝛼(−(𝑡 − 𝑡0)𝛼) − 2𝑐2 𝐸𝛼(−2(𝑡 − 𝑡0)𝛼).                                       (17) 

Where 𝑐1 and 𝑐2 are constants. 

 Example 3.2: If 0 < 𝛼 ≤ 1. Solve the initial value problem of the linear system of fractional differential equations 

 

                                                                       ( 𝐷0 𝑡
𝛼) [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
] = [

0 1
−1 −2

] [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
],                                                            (18) 

                                                                                                 [𝑥𝛼(0)

𝑦𝛼(0)
] = [1

1
].                                                                             (19) 

Solution   The characteristic polynomial is 

                                                                              𝑝(𝜆) = |
−𝜆 1
−1 −2 − 𝜆

| = (𝜆 + 1)2.                                                       (20) 
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Therefore, the eigenvalues of  [
0 1

−1 −2
]   are 𝜆1 = 𝜆2 = 𝜆 = −1.                                                                           (21) 

([
0 1

−1 −2
] − 𝜆𝐼) 𝑣1 = [0

0
],  that is,  [

1 1
−1 −1

] 𝑣1 = [0
0
], then the eigenvector 𝑣1 = [ 1

−1
]. 

([
0 1

−1 −2
] − 𝜆𝐼)

2

𝑣2 = [0
0
],  that is,  [

0 0
0 0

] 𝑣2 = [0
0
]. We choose 𝑣2 = [0

1
], then 

                                                      ([
0 1

−1 −2
] − 𝜆𝐼)

2

𝑣2 = [0
0
], but ([

0 1
−1 −2

] − 𝜆𝐼) 𝑣2 ≠ [0
0
].                               (22) 

Thus, the general solution of this linear system of fractional differential equations is  

                                                    [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
]  

                                               = 𝑐1 𝐸𝛼(−𝑡𝛼)𝑣1 + 𝑐2 𝐸𝛼(−𝑡𝛼) [𝐼 +
1

Γ(𝛼+1)
𝑡𝛼⨂ ([

0 1
−1 −2

] − 𝜆𝐼)] 𝑣2  

                                               = 𝑐1 𝐸𝛼(−𝑡𝛼)[ 1
−1

] + 𝑐2 𝐸𝛼(−𝑡𝛼) [[
1 0
0 1

] +
1

Γ(𝛼+1)
𝑡𝛼⨂ ( [

1 1
−1 −1

])] [0
1
]   

                                               = 𝑐1 𝐸𝛼(−𝑡𝛼)[ 1
−1

] + 𝑐2 𝐸𝛼(−𝑡𝛼) [
1 +

1

Γ(𝛼+1)
𝑡𝛼 1

Γ(𝛼+1)
𝑡𝛼

−
1

Γ(𝛼+1)
𝑡𝛼 1 −

1

Γ(𝛼+1)
𝑡𝛼

] [0
1
]  

                                               = [ 𝑐1 𝐸𝛼(−𝑡𝛼)

−𝑐1 𝐸𝛼(−𝑡𝛼)
] + [

𝑐2 
1

Γ(𝛼+1)
𝑡𝛼⨂𝐸𝛼(−𝑡𝛼)

𝑐2(1−
1

Γ(𝛼+1)
𝑡𝛼)⨂𝐸𝛼(−𝑡𝛼)

]  

                                               = [
𝑐1 𝐸𝛼(−𝑡𝛼)+𝑐2 

1

Γ(𝛼+1)
𝑡𝛼⨂𝐸𝛼(−𝑡𝛼)

−𝑐1 𝐸𝛼(−𝑡𝛼)+𝑐2(1−
1

Γ(𝛼+1)
𝑡𝛼)⨂𝐸𝛼(−𝑡𝛼)

].                                                                                       (23) 

Hence, 

                                                              𝑥𝛼(𝑡𝛼) = 𝑐1 𝐸𝛼(−𝑡𝛼) + 𝑐2  
1

Γ(𝛼+1)
𝑡𝛼⨂𝐸𝛼(−𝑡𝛼),                                                     (24) 

                                                              𝑦𝛼(𝑡𝛼) = −𝑐1 𝐸𝛼(−𝑡𝛼)+𝑐2 (1 −
1

Γ(𝛼+1)
𝑡𝛼) ⨂𝐸𝛼(−𝑡𝛼).                                        (25) 

Where 𝑐1 and 𝑐2 are constants. 

Since   [𝑥𝛼(0)

𝑦𝛼(0)
] = [1

1
], it follows that 𝑐1 = 1 and 𝑐2 = 2. And hence, 

                                                                     𝑥𝛼(𝑡𝛼) = (1 + 2 
1

Γ(𝛼+1)
𝑡𝛼) ⨂𝐸𝛼(−𝑡𝛼),                                                             (26) 

                                                                     𝑦𝛼(𝑡𝛼) = (1 − 2 
1

Γ(𝛼+1)
𝑡𝛼) ⨂𝐸𝛼(−𝑡𝛼).                                                             (27) 

Example 3.3: Suppose that 0 < 𝛼 ≤ 1.  Solve the initial value problem of the following linear system of fractional 

differential equations 

 

                                                                               ( 𝐷0 𝑡
𝛼) [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
] = [

3 −2
4 −1

] [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
],                                                            (28) 

                                                                                                    [𝑥𝛼(0)

𝑦𝛼(0)
] = [1

5
].                                                                               (29) 

Solution   The characteristic equation is 

                                                                       𝑝(𝜆) = |
3 − 𝜆 −2

4 −1 − 𝜆
| = 𝜆2 − 2𝜆 + 5 = 0.                                                (30) 
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Thus, the eigenvalues of [
3 −2
4 −1

]   are 𝜆1 = 1 + 2𝑖 , 𝜆2 = 1 − 2𝑖.                                                                                 (31) 

For 𝜆1 = 1 + 2𝑖, from the following equation 

                                                                                       ([
3 −2
4 −1

] − 𝜆1𝐼) 𝑣 = [0
0
],                                                                   (32) 

we obtain that 

                                                                                      [
2 + 2𝑖 −2

4 −2 − 2𝑖
] 𝑣 = [0

0
].                                                                 (33) 

We choose        

                                                                                                 𝑣 = [1+𝑖
2

].                                                                                     (34) 

Therefore, 

                                                                                          𝐸𝛼((1 + 2𝑖)𝑡𝛼)[1+𝑖
2

]                                                                         (35) 

is a complex-valued solution of Eq. (29). 

Since 

                                                        𝐸𝛼((1 + 2𝑖)𝑡𝛼) [
1 + 𝑖

2
] 

                                                   = 𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼) + 𝑖𝑠𝑖𝑛𝛼(2𝑡𝛼)) ([
1

2
] + 𝑖 [

1

0
]) 

                                                   = [
𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)−𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑐𝑜𝑠𝛼(2𝑡𝛼)
] + 𝑖 [

𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)+𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑠𝑖𝑛𝛼(2𝑡𝛼)
].                                   (36) 

Thus, the general solution of this linear system of fractional differential equations is  

                                         [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
] = 𝑐1 [

𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)−𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑐𝑜𝑠𝛼(2𝑡𝛼)
] + 𝑐2 [

𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)+𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑠𝑖𝑛𝛼(2𝑡𝛼)
].                        (37) 

Where 𝑐1 and 𝑐2 are real constants. 

Since   [𝑥𝛼(0)

𝑦𝛼(0)
] = [1

5
], it follows that 

                                                                                                      {
𝑐1 + 𝑐2 = 1

2𝑐1 = 5
.                                                                           (38) 

And hence, 

                                                                                                    𝑐1 =
5

2
, 𝑐2 = −

3

2
.                                                                      (39) 

So, 

                                                [𝑥𝛼(𝑡𝛼)

𝑦𝛼(𝑡𝛼)
]  

                                            =
5

2
[

𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)−𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑐𝑜𝑠𝛼(2𝑡𝛼)
] −

3

2
[

𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)+𝑠𝑖𝑛𝛼(2𝑡𝛼))

2𝐸𝛼(𝑡𝛼)⨂𝑠𝑖𝑛𝛼(2𝑡𝛼)
]  

                                            = [
𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼)−4𝑠𝑖𝑛𝛼(2𝑡𝛼))

𝐸𝛼(𝑡𝛼)⨂(5𝑐𝑜𝑠𝛼(2𝑡𝛼)−3⨂𝑠𝑖𝑛𝛼(2𝑡𝛼))
] .                                                                                            (40) 

Consequently, the solution of this initial value problem is 

                                                            𝑥𝛼(𝑡𝛼) = 𝐸𝛼(𝑡𝛼)⨂(𝑐𝑜𝑠𝛼(2𝑡𝛼) − 4𝑠𝑖𝑛𝛼(2𝑡𝛼)),                                                      (41) 

                                                            𝑦𝛼(𝑡𝛼) = 𝐸𝛼(𝑡𝛼)⨂(5𝑐𝑜𝑠𝛼(2𝑡𝛼) − 3⨂𝑠𝑖𝑛𝛼(2𝑡𝛼)).                                                (42) 
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IV.   CONCLUSION 

In this paper, we study the linear systems of fractional differential equations based on Jumarie’s modified R-L fractional 

derivative. According to the characteristic polynomial, we discuss this problem in three cases, namely, all distinct real 

eigenvalues, having the same real eigenvalues, and having complex eigenvalues. A new multiplication of fractional analytic 

functions plays an important role in this article. In fact, the new multiplication is a natural operation in fractional calculus. 

In the future, we will use fractional exponential function and fractional sine and cosine functions to study fractional calculus 

and fractional differential equations. 
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